
J. Fluid Mech. (2006), vol. 555, pp. 43–58. c© 2006 Cambridge University Press

doi:10.1017/S0022112006008664 Printed in the United Kingdom

43

Stability of the flow in a slowly diverging
rectangular duct
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The spatial instability problem in a slowly diverging rectangular duct is investigated.
The mean flow for the present problem is three-dimensional and has been obtained
asymptotically using lubrication theory. Using a WKBJ expansion for the disturbance
quantities, the zeroth- and first-order equations are derived. The zeroth-order problem
corresponds to a locally parallel flow approximation and the first-order problem yields
the non-parallel-flow correction to the eigenvalues obtained from the former through
the use of a solvability condition. The solution of these equations is discussed and the
results used to determine the effect of the variation in duct geometry on the neutral
curves.

1. Introduction
Our concern is with the instability of flows which are locally unidirectional, but

with the velocity field depending on the two variables normal to the flow direction
and slowly on the variable in the flow direction. In aerodynamics, such flows are
encountered in many situations, e.g. the corner flow near a wing–body junction and the
flow over a short wing. In order to gain insight into the instability of this type of flow,
here we consider another simpler flow that is common in engineering applications, i.e.
the flow along a rectangular pipe. In most cases, the flow is turbulent and many studies
have been performed in order to create a rigorous mathematical model to describe it
based on empirical closure assumptions. The stability characteristics of this flow have
been studied both experimentally and theoretically in the past and the results were
either compared with or based on the plane Poiseuille flow between two parallel plates.
Examples of the experimental studies include the works by Schiller (1923) and Davis &
White (1928) who used a rectangular pipe of large aspect ratio. However, transition
was estimated by the measurement of the head losses in the hydraulic experiments
performed, and no controlled experimental results were produced. Furthermore, in
the case of Davis & White, the estimated critical Reynolds numbers for various aspect
ratios were unusually small. This was attributed to the nonlinear subcritical instability
caused by the small depth of the experimental apparatus. In 1970, Kao & Park were
able to perform experiments on a tube of 1:8 aspect ratio using artificial excitation
produced by an oscillating ribbon and measuring the disturbances by means of
hot-film anemometers. Measurements were taken for wavelengths, wave speeds and
amplification rates. A critical Reynolds number was found at Reh = 2600, where
Reh = Umdh/ν is the Reynolds number based on the hydraulic diameter dh = 4S/C

(S being the aperture of the pipe and C the wetted perimeter) and the average flow
velocity Um = Q/S (Q being the flow rate). Above this value of the Reynolds number,
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the breakdown of a growing wave occurred as a simultaneous increase of amplitude
of various frequency modes and a decrease of the dominant mode amplitude.

The theoretical studies on this problem were hindered by numerical difficulties, since
the flow is strictly two-dimensional and the computer resources were not sufficient at
least until the early 1990s. Therefore, most of these studies correspond to the large-
aspect-ratio limit and are based on the well-known behaviour of plane Poiseuille flow.
As an example, the work by Hocking (1978) can be mentioned. He assumed that
the instability remains similar to that of Poiseuille flow and the stability results for
the rectangular pipe were taken to be perturbations of the unbounded solution. The
‘central’ region, where the flow resembles the Poiseuille flow, was considered separately
from the regions close to the sidewalls. The results indicated an increase of the critical
Reynolds number of O(A−2), where A was the (large) aspect ratio of the pipe. The
presence of a possible ‘edge’ mode located close to the sidewalls was not taken into
account. In 1990, the report by Tatsumi & Yoshimura followed with numerical results
for the stability of the complete rectangular pipe flow of arbitrary, but constant, aspect
ratio. Their results showed the existence of four possible modes. At the limit of infinite
aspect ratios (plane Poiseuille flow) two of these modes correspond to the symmetric
ṽ-disturbance which is known to be unstable at Re = 5772, whereas the other two
correspond to the anti-symmetric ṽ-disturbance which is stable. Results were taken
for all the modes for Re � 50 000 and it was concluded that the two modes that
are stable for Poiseuille flow are stable for every value of A. The other two modes
had increasing, but finite critical Reynolds numbers with decreasing aspect ratio.
One of them was seen to have lower critical Reynolds numbers for all the aspect
ratios (except at A → ∞ where they become identical). However, no critical Reynolds
number could be found for the most unstable mode for A < 3.2. Therefore, it was
concluded that the flow is stable for A < 3.2. Finally, the presence of strong vortex
layers was observed along the critical layer. The calculations of Tatsumi & Yoshimura
(1990) were repeated by Theofilis, Duck & Owen (2004) who found good agreement
with the previous work.

In the present report, we have focused on the most unstable mode of Tatsumi
& Yoshimura (1990) and we have extended that work to the case of a rectangular
pipe whose sidewalls are diverging slowly. This problem is related to the flow in a
slowly diverging two-dimensional channel which has already been studied extensively
using the lubrication theory. However, in this case, the laminar flow does not have
a similarity solution and the mean flow has to be computed independently at each
station. The presence of the crossflow velocity components leads to a system of three
PDEs that depends on the rate of change of the aspect ratio and the local streamwise
velocity component. The zeroth-order approximation to the linear stability problem
corresponds to the case of constant-aspect-ratio pipe. The first-order system has a
form similar to the zeroth-order, but with a non-zero right-hand side which depends
on the crossflow velocities and the rate of change of A. It can be solved only when a
solvability condition is satisfied. This condition provides the correction to the zeroth-
order eigenvalue problem. The results indicate that there is a finite region of instability
which depends on the Reynolds number and the streamwise velocity of the fluid at
the entrance of the pipe.

The structure of the present paper is as follows. In § 2, the mean flow equations are
derived. In § 3, the instability problem is formulated up to first-order terms consistent
with the mean flow accuracy. In § 4, the results of both the mean flow and the
instability problems are given. Finally, in § 5, some conclusions are drawn.
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2. The basic flow equations
Let the walls of the duct be defined by the following relations: y = ±1, −A(ξ ) � z �

A(ξ ) and −1 � y � 1, z = ±A(ξ ). Here, we have defined ξ = εx. The incompressible
non-dimensional Navier–Stokes equations describing the flow under study are:

continuity equation

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (1)

x-momentum equation

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
+

1

Re
∇2u, (2)

y-momentum equation

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+

1

Re
∇2v, (3)

z-momentum equation

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+

1

Re
∇2w. (4)

In the above, ∇2 is the Laplace operator in terms of the non-dimensional coordinates
(x, y, z). Since we are interested in the steady mean flow problem, the unsteady terms
will be dropped in what follows. Furthermore, since the duct is slowly divergent,
the dependence of the flow quantities on the streamwise coordinate will be of the
form q = q(εx, y, z), where q = (u, v, w, p)tr and ε � 1 indicates the streamwise
rate of change of the cross-sectional area. Moreover, this slow streamwise change
indicates that the values of the normal and spanwise velocity components (v and w,
respectively) will be a small perturbation to the solution corresponding to the duct
with constant cross-sectional area, which is known to be identically zero. It will be
shown that the pressure must have a dependence on the small parameter in order for
its effects to remain in the equations. Since the downstream dependence of the flow
is slow, we write

(u, v, w, p) = (ū, εv̄, εw̄, εn(p̄0 + εkp̄1)),

where n and k are constants to be found later and ū, v̄, w̄, p̄0 and p̄1 are of O(1).
Substituting in the continuity equation, we obtain:

∂ū

∂ξ
+

∂v̄

∂y
+

∂w̄

∂z
= 0. (5)

Furthermore, from the x-momentum equation, we find that diffusion balances the
pressure gradient if n = −1, in which case we have:

∂2ū

∂y2
+

∂2ū

∂z2
= Re

∂p̄0

∂ξ
. (6)

Using the above value of n and taking k = 2 so that there is no pressure gradient
accross the duct, we obtain for the y-momentum equation:

∂p̄0

∂y
= 0,

(
∂2v̄

∂y2
+

∂2v̄

∂z2

)
= Re

∂p̄1

∂y
, (7a, b)
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Similarly for the z-momentum equation, we have:

∂p̄0

∂z
= 0,

(
∂2w̄

∂y2
+

∂2w̄

∂z2

)
= Re

∂p̄1

∂z
. (8a, b)

The first of these two sets of equations indicates that the pressure at zeroth-order
accuracy depends only on the streamwise direction, and the x-momentum equation
can be written as:

∂2ū

∂y2
+

∂2ū

∂z2
= Re

dp̄0

dξ
. (9)

The boundary conditions for this equation are the no-slip condition on the walls.
However, the symmetry of the duct, and therefore of the basic flow, with respect to
the axes (y, 0) and (0, z) can be used in order to study just a quarter of the domain;
let us say the lower left-hand one. In this case, the boundary conditions for ū become:

lower and left-hand walls (−1, z) and (y, −A) : ū = 0,

upper and right-hand (flow) boundaries (0, z) and (y, 0) :
∂ū

∂n
= 0,

}
(10)

where n denotes the direction normal to each boundary. Using the linear dependence
of ū on the pressure gradient and the Reynolds number as indicated by equation (9),
we can write the solution of this equation as follows:

ū(ξ, y, z) = ¯̄u(ξ, y, z)Re
dp̄0

dξ
, (11)

where:

∂2¯̄u

∂y2
+

∂2¯̄u

∂z2
= 1,

and ¯̄u is also a function of ξ since the boundaries’ position changes with ξ . Following
Rosenhead (1963) the solution of this equation can be written as follows:

¯̄u(ξ, y, z) =
y2 − 1

2
+ 2

+∞∑
m=0

[
(−1)m

λ3
m

cosh(λmz)

cosh(λmA(ξ ))
cos(λmy)

]
, (12)

where λm = (2m + 1)π/2.
Now we return to the continuity equation. If we integrate equation (5) over the

cross-section, we obtain:∫ A(ξ )

−A(ξ )

∫ 1

−1

(
∂ū

∂ξ
+

∂v̄

∂y
+

∂w̄

∂z

)
dy dz = 0 ⇒

∫ A(ξ )

−A(ξ )

∫ 1

−1

∂ū

∂ξ
dy dz +

∫ A(ξ )

−A(ξ )

[v̄]1−1 dz +

∫ 1

−1

[w̄]A(ξ )
−A(ξ ) dy = 0.

The last two integrals above are identically equal to zero because of the boundary
conditions on the walls. Furthermore, the partial derivative with respect to ξ can be
taken out of the first integral, again by using the boundary conditions on the walls.
Therefore,

d

dξ

(∫ A(ξ )

−A(ξ )

∫ 1

−1

ū dy dz

)
= 0. (13)
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Finally, using equation (11), we obtain:

d

dξ

(∫ A(ξ )

−A(ξ )

∫ 1

−1

¯̄u(ξ, y, z)
dp̄0

dξ
dy dz

)
= 0 ⇒

d

dξ

[(∫ A(ξ )

−A(ξ )

∫ 1

−1

¯̄u(ξ, y, z) dy dz

)
dp̄0

dξ

]
= 0, (14)

which is the Reynolds equation of lubrication theory and can be integrated once in
order to yield:

dp̄0

dξ

∣∣∣∣
ξ

=
I (ξ0)

I (ξ )

dp̄0

dξ

∣∣∣∣
ξ=ξ0

, (15)

where

I (ξ ) =

∫ A(ξ )

−A(ξ )

∫ 1

−1

¯̄u(ξ, y, z) dy dz.

Using expression (12) it is possible to calculate this integral analytically and
therefore specify the right-hand side of equation (11). Indeed,

I (ξ ) = 8

+∞∑
m=0

tanh(λmA)

λ5
m

− 4A

3
, (16)

and the expression for ū becomes:

ū(ξ, y, z) =

(
I (ξ0)Re

dp̄0

dξ

∣∣∣∣
ξ=ξ0

)
¯̄u(ξ, y, z)

I (ξ )
. (17)

Without loss of generality, we can select the product of the Reynolds number and
the initial pressure gradient to satisfy the relation:

Re
dp̄0

dξ

∣∣∣∣
ξ=ξ0

¯̄u(ξ0, 0, 0) = κ0,

in which case, equation (17) becomes:

ū(ξ, y, z) = κ
¯̄u(ξ, y, z)

I (ξ )
, (18)

with κ = κ0I (ξ0)/¯̄u(ξ0, 0, 0), so that at ξ = ξ0, the maximum value of ū is κ0.
On the other hand, equations (5), (7b) and (8b) form a system of equations that has

to be solved simultaneously. However, this system will be manipulated even further
in order to be solved efficiently. Towards this end, we cross-differentiate (7) and (8)
and subtract one from the other. In this way the quantity

θ =
∂v̄

∂z
− ∂w̄

∂y
(19)

appears, which can be seen to be the vorticity function and it satisfies Laplace’s
equation: ∇2θ = 0. Furthermore, using the continuity equation (5) and the definition
of vorticity we can derive two more equations:

∇2v̄ − ∂θ

∂z
= − ∂2ū

∂ξ∂y
,

(20)

∇2w̄ +
∂θ

∂y
= − ∂2ū

∂ξ∂z
.
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The right-hand side of these equations can be calculated using equations (12), (16)
and (18).

The boundary conditions required to solve the above equations are as follows:

left-hand wall (y, −A) : v̄ = w̄ = θ − ∂v̄

∂z
= 0,

right-hand (flow) boundary (y, 0) :
∂v̄

∂z
= w̄ = θ = 0,

lower wall (−1, z) : v̄ = w̄ = θ +
∂w̄

∂y
= 0,

upper (flow) boundary (z, 0) : v̄ =
∂w̄

∂y
= θ = 0.




(21)

3. Linear stability equations
In order to derive the linear stability equations, we express the flow field as the

superposition of the basic flow quantities with the corresponding perturbations that
are assumed to be of very small size, so that their products and powers can be
dropped:

u = ū + û,

v = εv̄ + v̂,

w = εw̄ + ŵ,

p = ε−1p̄ + p̂.

The linearized disturbance equations take the form

∂û

∂x
+

∂v̂

∂y
+

∂ŵ

∂z
= 0, (22)

∂û

∂t
+ ū

∂û

∂x
+ û

∂ū

∂x
+ v̂

∂ū

∂y
+ εv̄

∂û

∂y
+ ŵ

∂ū

∂z
+ εw̄

∂û

∂z
= −∂p̂

∂x
+

1

Re

(
∂2û

∂x2
+

∂2û

∂y2
+

∂2û

∂z2

)
,

(23)

∂v̂

∂t
+ ū

∂v̂

∂x
+ εû

∂v̄

∂x
+ εv̂

∂v̄

∂y
+ εv̄

∂v̂

∂y
+ εŵ

∂v̄

∂z
+ εw̄

∂v̂

∂z
= −∂p̂

∂y
+

1

Re

(
∂2v̂

∂x2
+

∂2v̂

∂y2
+

∂2v̂

∂z2

)
,

(24)

∂ŵ

∂t
+ ū

∂ŵ

∂x
+ εû

∂w̄

∂x
+ εv̂

∂w̄

∂y
+ εv̄

∂ŵ

∂y
+ εŵ

∂w̄

∂z
+ εw̄

∂ŵ

∂z

= −∂p̂

∂z
+

1

Re

(
∂2ŵ

∂x2
+

∂2ŵ

∂y2
+

∂2ŵ

∂z2

)
. (25)

Once again we let q̂ = (û, v̂, ŵ, p̂)tr . Now we let q̂(ξ, y, z, t) = q̃(ξ, y, z)

exp(
∫ ξ

ε−1a(ξ1) dξ1 − iωt) where q̃(ξ, y, z) = q̃0(ξ, y, z) + εq̃1(ξ, y, z) and a(ξ ) =
a0(ξ ) + εa1(ξ ). The zeroth- and first-order systems can be formulated as follows:

zeroth order: Kq̃0 = 0, (26)

first order: Kq̃1 = f, (27)
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where,

K =




a0

∂

∂y

∂

∂z
0

L
∂ū

∂y

∂ū

∂z
a0

0 L 0
∂

∂y

0 0 L
∂

∂z




,

L = −Re−1

(
a2

0 +
∂2

∂y2
+

∂2

∂z2

)
+ a0ū − iω,

and f = (f1, f2, f3, f4)
tr , where,

f1 = −a1ũ0 − ∂ũ0

∂ξ
, (28a)

f2 = a1

[(
2a0

Re
− ū

)
ũ0 − p̃0

]

+

[(
2a0

Re
− ū

)
∂ũ0

∂ξ
− ∂p̃0

∂ξ
+

(
1

Re

da0

dξ
− ∂ū

∂ξ

)
ũ0 − v̄

∂ũ0

∂y
− w̄

∂ũ0

∂z

]
, (28b)

f3 = a1

(
2a0

Re
− ū

)
ṽ0

+

[(
2a0

Re
− ū

)
∂ṽ0

∂ξ
+

(
1

Re

da0

dξ
− ∂v̄

∂y

)
ṽ0 − v̄

∂ṽ0

∂y
− w̄

∂ṽ0

∂z
− ∂v̄

∂z
w̃0

]
, (28c)

f4 = a1

(
2a0

Re
− ū

)
w̃0

+

[(
2a0

Re
− ū

)
∂w̃0

∂ξ
+

(
1

Re

da0

dξ
− ∂w̄

∂z

)
w̃0 − ∂w̄

∂y
ṽ0 − v̄

∂w̃0

∂y
− w̄

∂w̃0

∂z

]
. (28d)

The zeroth-order problem is a quadratic eigenvalue problem, since the operator L
includes the eigenvalue a0 raised to the second power. Furthermore, the boundary
conditions require that the disturbance velocity components vanish at the boundary.
No boundary conditions need be specified for the pressure. A simplification could be
made by taking into account the symmetry of the duct with respect to the planes xy

and xz whose line of intersection coinsides with the x = 0 line. This symmetry would
enable the appearance of four possible modes whose crossflows are shown in figure 1.

The boundary conditions for these modes valid for the lower left-hand quarter of
the domain are (ũ, ṽ, w̃) = 0 on the walls and as follows for the ‘flow boundaries’:

Mode I: Along y = 0, z ∈ [−A(ξ ), 0] : ũ = 0, ṽy = 0, w̃ = 0,

Along y ∈ [−1, 0], z = 0 : ũz = 0, ṽz = 0, w̃ = 0,

Mode II: Along y = 0, z ∈ [−A(ξ ), 0] : ũ = 0, ṽy = 0, w̃ = 0,

Along y ∈ [−1, 0], z = 0 : ũ = 0, ṽ = 0, w̃z = 0,

Mode III: Along y = 0, z ∈ [−A(ξ ), 0] : ũy = 0, ṽ = 0, w̃y = 0,

Along y ∈ [−1, 0], z = 0 : ũz = 0, ṽz = 0, w̃ = 0,

Mode IV: Along y = 0, z ∈ [−A(ξ ), 0] : ũy = 0, ṽ = 0, w̃y = 0,

Along y ∈ [−1, 0], z = 0 : ũ = 0, ṽ = 0, w̃z = 0.




(29)
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0
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0
(III)

Figure 1. The crossflows corresponding to the four possible modes.

However, computationally we have used the shift-invert spectral transformation
which requires the inversion of matrix K with α = σ , where σ is the shift. Details of
the method can be found in Saad (1992). Preliminary results showed that this would
create a matrix for the solution of the eigenvalue problem with a very large condition
number, something that would hinder convergence of the iterative solver used to
‘invert’ this matrix. Therefore, we have proceeded with the full problem and we have
used the above symmetry properties in order to classify the resulting eigenvectors
(disturbances). Full details of the numerical schemes and the checks made to verify
the scheme can be found in Galionis (2003).

As far as the first-order problem is concerned, a solution is possible only when
a solvability condition is satisfied. This can be formulated in the process using the
adjoint problem, whose solution will be required for the solution of the solvability
condition. After some calculations, the adjoint system can be formulated exactly like
the zeroth-order problem (KaQ = 0), where

Ka =




a0 − ∂

∂y
− ∂

∂z
0

L 0 0 a0

∂ū

∂y
L 0 − ∂

∂y
∂ū

∂z
0 L − ∂

∂z




.

The operator L and the boundary conditions are the same as the zeroth-order problem.
Finally, the solvability condition has the form:∫ ∫

Ω

(f1P + f2U + f3V + f4W ) dΩ = 0. (30)
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As can be seen from (28), each of the terms fi can be split into two parts, the first
of which is proportional to a1. Therefore, if we write fi = a1fi1 − fi2, i = 1, 2, 3, 4, we
can obtain:

a1

∫ ∫
Ω

(f11P+f21U+f31V +f41W ) dΩ =

∫ ∫
Ω

(f12P+f22U+f32V +f42W ) dΩ, (31)

which can be solved for a1. This quantity can be subsequently used in order to calculate
the position of the neutral curve of the actual non-parallel flow. In particular, suppose
we define the neutral curve by Re{a(ξn)} = 0. To zeroth order in ε the growth rate at a
point in the flow is unique, but at order ε it will depend on the flow quantity used and
the position in the flow where it is sampled: see for example Gaster (1974). Thus, if we
define the neutral curve by Re{a(ξn)} = 0, then we are neglecting the rate of change of
the disturbance quantities with respect to ξ . In fact, to the graphical accuracy of the
results presented here, the latter effect is negligible. Expanding Re{a(ξ )} in a Taylor
series around the position ξ0 corresponding to the neutral curve of the parallel-flow
approximation, we obtain:

Re{a(ξn)} = 0 = Re{a0(ξn)} + εRe{a1(ξn)}
≈ εRe{a1(ξ0)} + Re{a′

0(ξ0)}δξ + 1
2
Re{a′′

0 (ξ0)}δξ 2.

This is a quadratic equation in δξ with solutions:

δξ1,2 =
Re{a′

0(ξ0)}
−Re{a′′

0 (ξ0)}
±

√(
Re{a′

0(ξ0)}
−Re{a′′

0 (ξ0)}

)2

+
2εRe{a1(ξ0)}
−Re{a′′

0 (ξ0)}
.

Although the second term inside the square root contains the small parameter ε, in
the general case, we cannot simplify this expression further, because the two terms in
the square root can be of the same order in the vicinity of the region where the upper
and lower branches of the parallel-flow neutral curve approach each other. Taking
into account that −Re{a′′

0 (ξ0)} > 0 along the neutral curve, we can select the proper
sign in the above expression for δξ based on the sign of Re{a′

0(ξ0)}. Indeed,

δξ =




Re{a′
0(ξ0)}

−Re{a′′
0 (ξ0)}

−

√(
Re{a′

0(ξ0)}
−Re{a′′

0 (ξ0)}

)2

+
2εRe{a1(ξ0)}
−Re{a′′

0 (ξ0)}
when Re{a′

0(ξ0)} > 0.

Re{a′
0(ξ0)}

−Re{a′′
0 (ξ0)}

+

√(
Re{a′

0(ξ0)}
−Re{a′′

0 (ξ0)}

)2

+
2εRe{a1(ξ0)}
−Re{a′′

0 (ξ0)}
when Re{a′

0(ξ0)} < 0.

(32)

Here, the derivatives must be evaluated numerically after a0, a1 have been calculated.
Note again that the above correction of the position of the neutral curve was based
on the assumption that the first-order term in the expansion of the growth rate a1

is the only term that plays a role in the ‘description’ of the non-parallel effects. We
have ignored this contribution, since, as stated above, to graphical accuracy, a1 gives
a satisfactory indication of the actual position of the non-parallel neutral curve. We
note also that if, for example, we follow Hall (1983) and define the local growth rate
on the disturbance energy integrated accross a cross-section, then we find that the
results presented below are unchanged.
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Figure 2. The distribution of the streamwise velocity ū over the upper right-hand quarter of
the duct.

0 0.5 1.0 1.5 2.0 2.5

0.2

0.1

0.4

0.3

0.6

0.5

0.8

0.9

0.7

1.0

z

y

Figure 3. The distribution of the crossflow velocity components v̄, w̄ over the upper
left-hand quarter of the duct.

4. Results
4.1. Mean flow

The mean flow at each station was computed initially with the calculation of the
streamwise velocity component which, as was shown, decouples from the crossflow
velocity components and is given by equation (18). Then the right-hand side of the
system of equations (20) can be calculated and the aforementioned system solved
together with the Laplace equation ∇2θ = 0. The results for the case A = 2.5 are
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Figure 4. The distribution of the vorticity θ .

illustrated in figures 2–4. In figure 2, the streamwise velocity component is shown
over the upper-right-hand quarter of the domain, after being normalized so that
its maximum value (at the centre of the duct) is unity. Because of symmetry, the
distribution of ū(y, z) is the same in the other quarters of the domain. It can be
observed that the effects of the sidewall become important only in a region close to
them of width equal to the height of the duct, whereas close to the vertical centreline,
ū attains the same form with the Poiseuille flow. This becomes more apparent at
larger values of the aspect ratio, as numerical results have indicated.

Furthermore, in figure 3, the crossflow velocity components are indicated over the
upper-left-hand part of the duct. It can be seen that the velocity component along
the largest dimension of the duct, in this case w̄, is much larger than the other.
Furthermore, it attains its highest values in a region close to the sidewalls and along
the horizontal centreline, and in the vicinity of the sidewall it diminishes rapidly. In
contrast, the crossflow is minimal in the vicinity of the normal centreline, agreeing
with the observation above that the flow in this region resembles Poiseuille flow.
It should be pointed out here that the overall magnitude of the crossflow velocity
components is ε times smaller than ū, as explained in § 2.

Moreover, figure 4 illustrates the vorticity distribution over the whole domain. It is
evident that the maximum vorticity is localized mainly close to the walls which are
along the largest dimension, the upper and lower walls in the present case. There is
also a small structure next to the remaining walls and close to the corners, but the
maximum strength of the latter is much less than that of the former. Owing to the
symmetry of the duct, the vorticity is characterized by antisymmetry and along both
the centrelines, θ is zero.

Finally, note that the equations that yield the velocity components are independent
of the Reynolds number, which means that flows with different Reynolds numbers
have (non-dimensionalized) velocity components of the same distribution and
magnitude. This is in contrast to external flows where, with increasing Reynolds
number, the boundary layer reduces in thickness.
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Figure 5. Plots for mode I in the upper right-hand quarter of the domain. (a, b) Contour
plots of the real and imaginary parts of the streamwise velocity disturbance together with the
critical layer ū = ω/Im{a} (thick black line). (c, d) Vector plots of the real and imaginary
parts of the velocity disturbances over a cross-section. (e, f ) Contour plots of the real and
imaginary parts of the pressure disturbance. (Neutral disturbance, A = 8, figure not to scale.)

4.2. Instability results

As far as the instability of the duct flow is concerned, we have carried out a series of
calculations that provide the neutral curves of the non-parallel flow (diverging duct)
for various Reynolds numbers and we have compared them to the corresponding
ones for the parallel flow (constant aperture duct). It should be mentioned that the
parallel flow calculations indicated that the most unstable of the modes is the first
one, according to its characteristics as these are defined in (29). Therefore, we have
concentrated on the first mode only, whose structure for the neutral case at A = 8
is illustrated in figure 5. It must be pointed out that the plots are not to scale in
order to improve clarity. The imaginary part of the eigenvalue that corresponds to
this disturbance is Im{a} ≈ 0.9802 and since the frequency of the neutral disturbance
is found to be ω ≈ 0.2497, the critical layer in which ū = ω/Im{a} lies along the
contour of the ū-distribution where ū ≈ 0.2547. This contour is shown in the two
upper contour plots in figure 5. It is evident that the disturbance is localized in the
vicinity of this critical layer.

The results of Tatsumi & Yoshimura (1990) can be used in order to predict
the shape of these neutral curves. Indeed, their results are derived by solving the
temporal instability problem along a duct of arbitrary but constant aspect ratio
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Figure 6. Comparison of the variation of the ‘local’ Reynolds number ReL versus the aspect
ratio A(ξ ) for various Reynolds numbers Re with the critical Reynolds numbers calculated in
Tatsumi & Yoshimura (1990) for various aspect ratios.

with the streamwise velocity, the only non-zero component, normalized such that
its maximum value is unity. In the present formulation, the streamwise velocity
component changes along the streamwise direction. However, it is possible to re-
normalize the equations so that ū(ξ ) = 1 = const and the Reynolds number, Re and
frequency ω vary along ξ . In this case we have:

ReL(ξ ) = κ0Re/I (ξ ),

where Re is the Reynolds number of the original formulation and ReL a ‘local’
Reynolds number of the modified formulation. If we choose κ0 such that ū(ξ = 5) =
1 ⇒ ReL(ξ = 5) = Re, we can plot the ‘local’ Reynolds number versus the aspect
ratio A(ξ ). In the same figure we can plot the results of Tatsumi & Yoshimura (1990)
for the critical Reynolds number of the first mode for various aspect ratios. This is
illustrated in figure 6 for Re = 10 000, 11 000 and 12 000. We can see that, for the
two larger Reynold numbers, there is a finite region of aspect ratios, and therefore
of streamwise positions ξ , along which the ‘local’ Reynolds number is larger than
the critical ones given by Tatsumi & Yoshimura (1990). For the smaller Reynolds
number, the curve corresponding to ReL does not cross the critical Reynolds number
line. Therefore, it appears that the flow for which Re = 10000 and ū(ξ = 5) = 1 is
stable. Finally, it is obvious that there will always be a finite region of instability,
irrespective of how large the Reynolds number Re is. This means that the neutral
curves are closed.

We used a Newton iteration method in order to find the position of the neutral
points with tolerance for the absolute value of the growth rate equal to 10−8 for
the cases Re = 10 200, 11 000 and 12 000. The last two values render the two closed
curves illustrated in figure 7, whilst the first one corresponds to the case in which
the flow becomes neutrally stable at a single ξ -position and remains stable elsewhere.
However, these results correspond to the case when the flow is considered to be
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Figure 7. The neutral curves based on the zeroth-order approximation of the growth rate
for three different Reynolds numbers.

locally parallel. Of course this is in direct contrast to the diverging nature of the tube,
which led us in the first place to the definition of the ‘global’ and ‘local’ Reynolds
numbers. Therefore, the aforementioned results may not be used in order to draw
any conclusions for the regions of instability of the flow under consideration.

The non-parallel character of the flow can be included in the calculation of the
position of the neutral curves by use of the correction (32). The corrected neutral
curves for the cases Re = 11 000 and Re = 12 000 are illustrated in figure 8. The
corrections were calculated after setting ε = 0.001, ε = 0.005 and ε = 0.015. Note
here that the range of validity of the expansion procedure is much smaller near the
top left-hand and bottom right-hand parts of the neutral curve. This is because the
horizontal and vertical tangents to the neutral curve with ε = 0 occur close to each
other so that even very small values of ε produce large shifts in the neutral curve.
This means that the ‘wiggles’ in the neutral curves in the top left-hand corner are
artefacts of our using the asymptotic theory in a place where it is not valid.

5. Conclusions
It was demonstrated above that the non-parallel effects lead to a destabilization

of the flow, both for the lower and upper branch neutral solutions corresponding
to the parallel-flow approximation. Furthermore, it appears that the correction to
the parallel-flow solution is larger for the smaller Reynolds numbers. This should be
expected, since the smaller the Reynolds number becomes, the closer the critical layer
lies to the centre of the duct. In turn, this means that the flow is affected more in the
small Reynolds numbers, even with the same rate of change of the aspect ratio.
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Figure 8. Combination of the neutral curves based on the zeroth- and first-order
approximations of the growth rate for (a) Re = 11 000 and (b) Re = 12 000. (—, parallel
flow ε = 0; ×—, ε = 0.001; �−−, ε = 0.005; �—–, ε = 0.015.)

Although the results that were shown here refer to the ū(ξ = 5) = 1 case, they
can be used as an indication of the shape of the neutral curves for other cases, since
the former value is linked to the normalization of the velocity that leads to the non-
dimensional Navier–Stokes equations. Therefore, with a different reference velocity
u∗

ref , the ū = 1 position can be transferred anywhere in the ξ -direction and after
the corresponding change of the Reynolds number Re = u∗

ref L∗/ν∗ and frequency
ω = ω∗L∗/u∗

ref the position of the parallel-flow approximation neutral curves can be
guessed. The related non-parallel flow neutral curves should follow the shape of the
parallel-flow ones, as was shown in the treated cases.

Furthermore it was shown in Tatsumi & Yoshimura (1990) that there is a critical
aspect ratio below which all disturbances are damped, namely Ac = 3.2. This is a
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parallel-flow stability result. In general, the neutral curve corresponding to the non-
parallel flow under the same conditions could be different from the parallel-flow
one so that stable conditions under the parallel-flow approximation become unstable
under the non-parallel flow approximation. However, since the critical point is neutral
for Reynolds number equal to infinity, and taking into account the above observation
that for increasing Reynolds numbers the changes due to the non-parallel character
of the flow become less important, we conclude that A = 3.2 yields the value of
the critical aspect ratio below which no unstable disturbance can exist also for the
non-parallel flow.

Unfortunately, the existing experimental results refer to the case of a constant-
aperture duct with a large aspect ratio (A > 8). Therefore, they cannot be used for
the verification of the present theoretical results. Measurements of the disturbance
quantities under controlled conditions and with the introduction of well-defined
disturbances are essential in order to be able to make any comparisons. In the light
of the existing experimental results and their comparison with previous theoretical
works of Tatsumi & Yoshimura (1990), it becomes evident that full agreement between
theoretical and experimental results cannot be achieved owing to the nonlinearities
existing in the experiments. In the present problem, this will become even harder
because of the diverging character of the duct and the sensitivity of the flow even to
slight changes of the pressure gradient.
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